
1

Comparison of Threading Programming Models
Solmaz Salehian, Jiawen Liu and Yonghong Yan

Department of Computer Science and Engineering, Oakland University, Rochester, MI USA

{ssalehian,jliu,yan}@oakland.edu

Abstract—In this paper, we provide comparison of language
features and runtime systems of commonly used threading
parallel programming models for high performance computing,
including OpenMP, Intel Cilk Plus, Intel TBB, OpenACC, Nvidia
CUDA, OpenCL, C++11 and PThreads. We then report our
performance comparison of OpenMP, Cilk Plus and C++11 for
data and task parallelism on CPU using benchmarks. The results
show that the performance varies with respect to factors such as
runtime scheduling strategies, overhead of enabling parallelism
and synchronization, load balancing and uniformity of task
workload among threads in applications. Our study summarizes
and categorizes the latest development of threading programming
APIs for supporting existing and emerging computer architec-
tures, and provides tables that compare all features of different
APIs. It could be used as a guide for users to choose the APIs
for their applications according to their features, interface and
performance reported.

Keywords-threading; parallel programming; data parallelism;
task parallelism; memory abstraction; synchronization; mutual
exclusion

I. INTRODUCTION

The High Performance Computing (HPC) community has

developed a rich variety of parallel programming models to

facilitate the expression of the required levels of concurrency

to exploit hardware capabilities. Programming APIs for node-

level parallelism, such as OpenMP, Cilk Plus, C++11, POSIX

threads (PThreads), Intel Threading Building Blocks (TBB),

OpenCL, Microsoft Parallel Patterns Library (PPL), to name

a few, each has its unique set of capabilities and advantages.

They also share certain functionalities realized in different

interfaces, e.g., most of them support both data parallelism

and task parallelism patterns for CPU. They are all evolving

to become more complex and comprehensive to support new

computer architectures and emerging applications. It becomes

harder for users to choose from those APIs for their appli-

cations with regards to the features and interfaces of these

models.

The same parallelism pattern could be realized using differ-

ent interfaces and implemented using different runtime sys-

tems. The runtime systems that support those features vary in

terms of scheduling algorithms and implementation strategies,

which may cause dramatically different performance for the

same applications created using different programming APIs.

Thus, performance-wise selection of the right API requires

efforts for studying and benchmarking for users’ application.

In this paper, we provide an extensive comparison of

language features and runtime systems of commonly used

threading parallel programming models for HPC, including

OpenMP, Intel Cilk Plus, Intel TBB, OpenACC, Nvidia

CUDA, OpenCL, C++11 and PThreads. We then report our

performance comparisons of OpenMP, Cilkplus and C++11

for data and task parallelism on CPU, showing the impacts

of runtime systems on the performance. The paper makes

the following contributions: 1) a list of features for threading

programming APIs to support existing and emerging computer

architectures; 2) comparison of threading models in terms of

feature support and runtime scheduling strategies; 3) perfor-

mance comparisons of OpenMP, Cilk Plus and C++11 for data

and task parallelism on CPU using benchmark kernels and

Rodinia [7].

The rest of the paper is organized as follows. In section II,

a list of API features of parallel APIs are summarized. In

section III, comparisons of interfaces and runtime systems

are presented. Section IV presents performance comparisons.

Section V provides related work study and Section VI contains

our conclusion.

II. FEATURES FOR THREADING PROGRAMMING APIS

The evolvement of programming models has been mostly

driven by advances of computer system architectures and new

application requirements. Computing nodes of existing and

emerging computer systems might be comprised of many

identical computing cores in multiple coherency domains, or

they may be heterogeneous, and contain specialized cores that

perform a restricted set of operations with high efficiency.

Deeper memory hierarchies and more challenging NUMA

effects for performance optimization have been seen in the

emerging computer systems. Further, explicit data movement

is necessary for nodes that present distinct memory address

spaces to different computing elements, as demonstrated in

today’s accelerator architectures.

To facilitate programming a diversified range of computer

systems, an ideal API must be expressive for the required

levels of concurrency and many other unique features of

hardware, while permitting an efficient implementation by

system software. In this section, we categorized different

features of threading model APIs. The detailed comparison

of threading programming APIs based on these categories are

discussed in next section.

Parallelism: A programming model provides API for spec-

ifying different kinds of parallelism that either map to parallel

architectures or facilitate expression of parallel algorithms. We

consider four commonly used parallelism patterns in HPC: 1)

data parallelism, which maps well to manycore accelerator

and vector architecture depending on the granularity of data

parallel unit; 2) asynchronous task parallelism, which can

be used to effectively expresses certain parallel algorithms,

e.g., irregular and recursive parallelism; 3) data/event-driven



2

computation, which captures computations characterized as

data flow; and 4) offloading parallelism between host and

device, which is used for accelerator-based systems.

Abstraction of memory hierarchy and programming for

data locality: Portable optimization of parallel applications

on shared memory NUMA machines has been known to be

challenging. Recent architectures that exhibit deeper memory

hierarchies and possible distinct memory/address spaces make

portable memory optimization even harder. A programming

model helps in this aspect by providing: 1) API abstraction of

memory hierarchy and core architecture, e.g., an explicit no-

tion of NUMA memory regions or high bandwidth memory; 2)

language construct to support binding of computation and data

to influence runtime execution under the principle of locality;

3) means to specify explicit data mapping and movement for

sharing data between different memory and address spaces;

and 4) interfaces for specifying memory consistency model.

Synchronizations: A programming model often provides

constructs for supporting coordination between parallel work

units. Commonly used constructs include barrier, reduction

and join operations for synchronizing a group of threads or

tasks, point-to-point signal/wait operations to create pipeline

or workflow executions of parallel tasks, and phase-based

synchronization for streaming computations.

Mutual exclusion: Interfaces such as locks are still widely

used for protecting data access. A model provides lan-

guage constructs for creating exclusive data access mecha-

nism needed for parallel programming, and may also define

appropriate semantics for mutual exclusion to reduce the

opportunities of introducing deadlocks.

Error handling, tools support, and language binding:

Error handling provides support for dealing with faults from

user programs or the system to improve system and applica-

tion resilience. Support for tools, e.g., performance profiling

and debugging tools, is essential to improve the productivity

of parallel application development and performance tuning.

For HPC, C, C++ and Fortran are still the dominant base

languages. While functional languages can provide a cleaner

abstraction for concurrency, it is not easy to rewrite all legacy

code and library to a new base language. Ideally, a model

would support at least these three languages.

III. COMPARISON OF LANGUAGE FEATURES AND

RUNTIME SYSTEMS

In this section, we report our comparison on language

features and interfaces, as well as runtime scheduling systems.

The list of commonly used threading programming models

for comparison includes OpenMP, Intel Cilk Plus, Intel TBB,

OpenACC, Nvidia CUDA, OpenCL, C++11 and PThreads.

PThreads and C++11 are baseline APIs that provide core func-

tionalities to enable other high-level language features. CUDA

(only for NVIDIA GPU) and OpenCL are considered as low-

level programming interfaces for recent manycore and acceler-

ator architectures that can be used as user-level programming

interfaces or intermediate-level interfaces for the compiler-

transformation targets from high-level interfaces. OpenACC

provides high-level interfaces for offloading parallelism for

manycore accelerators. Intel TBB and Cilk Plus are task based

parallel programming models used on multi-core and shared

memory systems. OpenMP is a more comprehensive standard

that supports a wide variety of features we listed.

A. Language Features and Interfaces

The full comparisons of language features and interfaces

are summarized in Table I, II and III. For parallelism support

listed in Table I, asynchronous tasking or threading can

be viewed as the foundational parallel mechanism that is

supported by all the models. Overall, OpenMP provides the

most comprehensive set of features to support all the four

parallelism patterns. For accelerators (NVIDIA GPUs and Intel

Xeon Phis), both OpenACC and OpenMP provide high-level

offloading constructs and implementation though OpenACC

supports mainly offloading. Only OpenMP and Cilk Plus

provide constructs for vectorization support (OpenMP’s simd

directives and Cilk Plus’ array notations and elemental func-

tions). For data/event driven parallelism, C++’s std::future,

OpenMP’s depend clause, and OpenACC’s wait are all for

user to specify asynchronous task dependency to achieve

such kind of parallelism. Other approaches, including CUDA’s

stream, OpenCL pipe, and TBB’s pipeline, provide pipelining

mechanisms for asynchronous executions with dependencies

between CPU tasks.

For supporting abstraction of memory systems and data

locality programming, the comparison is listed in Table II.

Only OpenMP provides constructs for programmers to specify

memory hierarchy (as places) and the binding of compu-

tation with data (proc bind clause). Programming models

that support manycore architectures provide interfaces for

organizing a large number threads (x1000) into a two-level

thread hierarchy, e.g., OpenMP’s teams of threads, Ope-

nACC’s gang/worker/vector clause, CUDA’s blocks/threads

and OpenCL’s work groups. Models that support offloading

computation provide constructs to specify explicit data move-

ment between discrete memory spaces. Models that do not

support other compute devices do not require them. It is also

important to note, though not listed in the table, that C++

thread memory model includes interfaces for a rich memory

consistency model and guarantees sequential consistency for

programs without data races [6], that are not available in most

others, except the OpenMP’s flush directive.

For supporting the three synchronization operations, i.e.

barrier, reduction and join operations, whose comparison is

summarized in Table II, OpenMP supports all the operations.

Cilk Plus and TBB provide join and reducer. Note that since

Cilk Plus and Intel TBB emphasize tasks rather than threads,

the concept of a thread barrier makes little sense in their

model, so its omission is not a problem.

The comparisons of the rest of the features are summarized

in Table III. Locks and mutexes are still the most widely

used mechanisms for providing mutual exclusion. OpenMP

supports locks which are used with the aim of protecting

shared variables and C++11, PThread and TBB provide mutex

which is similar to locks.

Most of the models have C and C++ bindings, but only

OpenMP and OpenACC have Fortran bindings. Most models



3

TABLE I: Comparison of Parallelism

Parallelism

Data parallelism Async task parallelism Data/event-driven Offloading

Cilk Plus cilk for, array operations, ele-
mental functions

cilk spawn/cilk sync x host only

CUDA <<<--->>> async kernel launching and mem-
cpy

stream device only

C++11 x std::thread, std::async/future std::future host only

OpenACC kernel/parallel async/wait wait device only (acc)

OpenCL kernel clEnqueueTask() pipe, general DAG host and device

OpenMP parallel for, simd, distribute task/taskwait depend (in/out/inout) host and device
(target)

PThread x pthread create/join x host only

TBB parallel for/while/do, etc task::spawn/wait pipeline, parallel pipeline,
general DAG (flow::graph)

host only

TABLE II: Comparison of Abstractions of Memory Hierarchy and Synchronizations

Abstraction of memory hierarchy and programming for data locality Synchronization

Abstraction of
memory hierarchy

Data/computation
binding

Explicit data
map/movement

Barrier Reduction Join

Cilk Plus x x N/A(host only) implicit for
cilk for only

reducers cilk sync

CUDA blocks/threads,
shared memory

x cudaMemcpy func-
tion

synchthreads x x

C++11 x (but memory con-
sistency)

x N/A(host only) x x std::join,

std::future

OpenACC cache,
gang/worker/vector

x data copy/copy
in/copyout

x reduction wait

OpenCL work group/item x buffer Write func-
tion

work group bar-
rier

work group
reduction

x

OpenMP OMP PLACES,
teams and distribute

proc bind clause map(to/from
/tofrom/alloc)

barrier, implicit
for parallel/for

work group
reduction

taskwait

PThread x x N/A(host only) pthread barrier x pthread join

TBB x affinity partitioner N/A(host only) N/A(tasking) parallel reduce wait

do not provide dedicated mechanisms for error handling and

many leverage C++ exceptions for that purpose. As an ex-

ception, OpenMP has its cancel construct for this purpose,

which supports an error model. For tools support, Cilk Plus,

CUDA, and OpenMP are three implementations that provide

a dedicated tool interface or software. Many of the host-only

models can use standard system profiling tools such as Linux

perf.

B. Runtime Systems

The fork-join execution model and workstealing of dynamic

tasks are the two main scheduling mechanisms used in the

threading programming systems. The complexity of runtime

system varies depending on the features to support for a pro-

gramming model. Using OpenMP as example, which provides

more features than any other model, it fundamentally employs

the fork-join execution model and worksharing runtime for

OpenMP worksharing loops. In fork-join model, a master

thread is the single thread which begins execution until it

reaches a parallel region. Then, the master thread forks a

team of worker threads and all threads execute the parallel

region concurrently. Upon exiting parallel region, all threads

synchronize and join, and only the master thread is left after

the parallel region. In data parallelism, the iterations of a par-

allel loop are distributed among threads, which is called work-

sharing. For tasking in OpenMP, a workstealing scheduler is

normally used within the fork-join runtime [15, 5]. Using

Intel OpenMP runtime library as example [2], the runtime

employs a hybrid schedulers of fork-join, worksharing, and

workstealing.

The Cilk Plus and TBB use random work-stealing sched-

uler [11] to dynamically schedule tasks on all cores. In

Cilk Plus, each worker thread has a double-ended queue

(deque) to keep list of the tasks. The work-stealing sched-

uler of a worker pushes and pops tasks from one end of

the queue and a thief worker steals tasks from the other

end of the queue. In this technique, if the workload is

unbalanced between cores, the scheduler dynamically bal-

ance the load by stealing the tasks and executing them

on the idle cores. Cilk Plus uses the workstealing run-



4

TABLE III: Comparison of Mutual Exclusions and Others

Mutual exclusion Language or library Error handling Tool support

Cilk Plus containers, mutex, atomic C/C++ elidable language
extension

x Cilkscreen, Cilkview

CUDA atomic C/C++ extensions x CUDA profiling tools

C++11 std::mutex, atomic C++ C++ exception System tools

OpenACC atomic directives for C/C++ and
Fortran

x System/vendor tools

OpenCL atomic C/C++ extensions exceptions System/vendor tools

OpenMP locks, critical, atomic, single,
master

directives for C/C++ and
Fortran

omp cancel OMP Tool interface

PThread pthread mutex, pthread cond C library pthread cancel System tools

TBB containers, mutex, atomic C++ library cancellation and exception System tools

time for scheduling data parallelism specified using cilk for.

Achieving load balancing across cores when there are more

tasks than the number of cores is known as composability

problem [19]. In Cilk Plus, the composition problem has been

addressed through the workstealing runtime. In OpenMP, the

parallelism of a parallel region is mandatory and static, i.e.,

system must run parallel regions in parallel, so it suffers from

the composability problem when there is oversubscription.

A work-stealing scheduler can achieve near-optimal

scheduling in a dedicated application with a well-balanced

workload [1]. OpenMP uses work-stealing only in task paral-

lelism. For data parallelism, it uses work-sharing scheduler, in

which users are required to specify the granularity of assigning

tasks to the threads. In OpenMP, task schedulers are based on

work-first and breadth-first schedulers. In work-first, tasks are

executed once they are created, while in breadth-first, all tasks

are first created, and the number of threads is limited by the

thread pool size. In C++11, task can be generated by using

std:async and a new thread is created by using std::thread.

In task level parallelism, runtime library manages tasks and

load balancing, while in thread level parallelism programmers

should take care of load balancing.

The runtime systems for low-level programming models

(C++ std::thread, CUDA, OpenCL, and PThreads) could be

simpler than that for more comprehensive models such as

OpenMP, Cilk Plus, OpenACC, C++ std::future and TBB.

The C++11 standard enables users to make the most use of

the available hardware directly using the interfaces that are

similar to the PThread library [14]. The implementation of

the std::thread interfaces could be simple mapping to PThread

APIs, thus has minimum scheduling in the runtime. It leaves to

users to make mapping decisions between threads and cores.

The support for offloading in models such as OpenACC

and OpenMP also varies depending how much the offloading

features should be integrated with the parallelism support from

CPU side, e.g. whether it allows each of the CPU threads to

launch an offloading request. The support for data/event-driven

parallelism also adds another dimension of complexity in the

runtime systems, to both CPU parallelism and the offloading,

as shown in our previous work for implementing OpenMP task

dependency [12].

IV. PERFORMANCE COMPARISON

For performance comparison, we only choose OpenMP, Cilk

Plus and C++ which we believe are the three most used models

for CPU parallelism. We also concentrate on data and task

parallelism patterns in comparisons which have been used

widely.

Two set of applications have been developed for exper-

imental evaluation, which are simple computation kernels,

and applications from the Rodinia benchmark [7]. For each

application, six versions have been implemented using the

three APIs. The OpenMP data parallel makes use of the

parallel and for directives, task version uses the task and

taskwait directives. For Cilk Plus versions, cilk for statement

has been used for data parallelism, while cilk spawn and

cilk async have been used to implement the task version. The

two versions for C++11 use std::thread and std::async APIs.

For data parallelism support in C++, we use a for loop and

manual chunking to distribute loop iterations among threads

and tasks. In principle, OpenMP static schedule is applied to

all the three models for data parallelism, allowing us to have

fair comparison of the runtime performance. The experiments

were performed on a machine with two-socket Intel Xeon E5-

2699v3 CPUs and 256 GB of 2133 MHz DDR4 ECC memory

forming a shared-memory NUMA system. Each socket has 18

physical cores (36 cores in the system) clocked at 2.3 GHz

(turbo frequency of 3.6 GHz) with two-way hyper-threading.

The host operating system is CentOS 6.7 Linux with kernel

version 2.6.32-573.12.1.el6.x86 64. The code was compiled

with the Intel icc compiler version 13.1.3. The Rodinia version

is 3.1.

A. Benchmark Kernels

Small kernels provide insights of runtime scheduling over-

head between different programming models and runtime. We

used the following scientific kernels.

Axpy: Axpy solves the equation y = a * x + y where x and

y are vectors of size N and a is scalar. The vector size used

in evaluation is 100 Million(M). Fig.1 shows the performance

results. The C++ implementation has two different versions for

std::thread and std::async: recursive and iterative versions.

In recursive versions, in order to avoid creating a large number



5

of small tasks, a cut-off BASE is used [9], which is calculated

as N divided by the number of threads. This helps to control

task creation and to avoid oversubscription of tasks over

hardware threads.

Referring to Fig.1, it is obvious that cilk for implementation

has the worst performance, while other versions almost show

the similar performance that are around two times better than

cilk for except for 32 cores. The reason is that workstealing

operations in Cilk Plus serialize the distributions of loop

chunks among threads, thus incurring more overhead than

worksharing approach. Also, if the function in the loop is not

big enough, the stealing costs could degrade the performance.

Sum: Sum calculates sum of a * X[N], where X is a vector

of size N and a is scalar. The vector size is 100M. Fig.2

shows the performance of different implementations for this

application. cilk for performs the worst while omp task has

the best performance and performs around five times better

than cilk for as Sum is the combination of worksharing and re-

duction, showing that workstealing for worksharing+reduction

is not the right choice.

Matvec: Matvec is matrix vector multiplication of problem

size 40k. The performance of this kernel is presented in Fig.3

which shows that cilk for performs around 25% worse than

the other versions.

Matmul: Matmul is matrix multiplication of 2k problem

size. The results in Fig.4 show cilk for has the worst per-

formance for this kernel as well, and other versions perform

around 10% better than cilk for. The performance trend

of these three kernels (Axpy, Matvec, Matmul) are similar

because they have the same nature and the function in the

loop is small. However, as the computation intensity increases

from AXPY to Matvec and Matmul, we see less impact of

runtime scheduling to the performance.

Fibonacci: Fibonacci uses recursive task parallelism to

compute the nth Fibonacci number, thus cilk for and omp for

are not practical. In addition, for recursive implementation

in C++, when problem size increases to 20 or above, the

system hangs because huge number of threads is created.

Thus, for this application, only the performance of cilk spawn

and omp task for problem size 40 are provided. As it is

shown in Fig 5. cilk spawn performs around 20% better

than omp task except for 1 core, because the workstealing

for omp task in Intel compiler uses lock-based deque for

pushing, popping and stealing tasks in the deque, which

increases more contention and overhead than the workstealing

protocol in Cilk Plus [11].

Overall, for Axpy, Matvec and Matmul, cilk for has the

worst performance while other versions perform similarly.

For Sum, cilk for performs worst while omp task has the

best performance. For Fibonacci, cilk spawn performs better

than omp task. It demonstrates that worksharing for task

parallelism may incur more overhead, while for data paral-

lelism workstealing creates more overhead. Thus, worksharing

mostly shows better performance for data parallelism and

workstealing has better performance for task parallelism. Even

though performance trends for different implementations of

each application have been varied, but the algorithms perform

similarly with regard to execution time, as more threads of

execution participated in the execution of work. However, the

rate of decrease is slower as more threads are added. This

can be explained by the overhead involved in the creation and

management of those threads.

B. Benchmarks from Rodinia

BFS: Breadth-first traversal is an algorithm that starts

searching from root of graph and search neighbor nodes before

moving to the next level of tree. There are two parallel phases

in this application. Each phase must enumerate all the nodes

in the array, determine if the particular node is of interest for

the phase and then process the node. The first phase visits the

discovered nodes and discovers new nodes to visit. The second

phase marks the newly discovered nodes as discovered for the

next run of the first phase. Each phase is parallelized on its

own.

For parallel version of BFS, each thread processes the same

number of tasks while the amount of work that they handle

might be different. This algorithm does not have contiguous

memory access, and it might have high cache miss rates.

A data set was generated that describes a graph consisting of

16 million inter-connected nodes. The Fig.6 represents the test

runs of this application. Overall, this algorithm scales well up

to 8 cores. The comparative execution time of the different im-

plementations shows cilk for has the worst performance while

others perform closely. This happens because workstealing

creates more overhead for data parallelism, while worksharing

for data parallelism is able to have close performance to other

implementations.

HotSpot: HotSpot is a tool to estimate processor tempera-

ture based on an architectural floorplan and simulated power

measurements [13] using a series of differential equations

solver. It includes two parallel loops with dependency to the

row and column of grids. Each thread receives the same

number of tasks with possible different workload. The memory

access is not sequential for this algorithm that might result in

more execution time because of more cache miss rates. The

problem size used for the evaluation was 8192.

For this application, data parallelism of both Cilk Plus and

OpenMP show poor performance, which most likely happen

because of the dynamic nature of this algorithm and depen-

dency in different compute intensive parallel loop phases. Task

version of OpenMP also shows weak performance for small

number of threads because of more overhead costs, but a

slightly stronger correlation can indicate that as more threads

are added, the task parallel implementations are gaining more

than the worksharing parallel implementations. The execution

time of the other implementations, on the other hands, are

close and scale well specially when more thread is adding.

However, the rate of decrease gets slower for higher number

of threads.

LUD: LU Decomposition (LUD) accelerates solving linear

equation by using upper and lower triangular products of a ma-

trix. Each sub-equation is handled in separate parallel region,

so the algorithm has two parallel loops with dependency to

an outer loop. In each parallel loop, thread receives the same

number of tasks with possible different amount of workload.







8

form more closely such as LavaMD and SRAD applications.

Lastly, when application has a dynamic nature and there is

dependency in different parallel loop phases, tasking might

outperform worksharing such as Hotspot application.

V. RELATED WORK

A comparative study of different task parallel frameworks

has been done by Podobas et al [18] using BOTS benchmark

[9]. Different implementations of OpenMP from Intel (ICC),

Oracle (SunCC), GCC (libgomp), Mercurium/Nanos++[8],

OpenUH [3] and two runtime implementations including Wool

[10] and Cilk Plus, had been evaluated. Speedup performance,

power consumption, caches and load-balancing properties had

been considered for the evaluation. They however did not

compare and evaluate other language features.

Shen et al [7] did a performance evaluation for eleven

different types of applications in Rodinia benchmark on three

multi-core CPUs using OpenMP. This work examined the

results by scaling the dataset and the number of threads for

each application. They found out OpenMP generally performs

and scales well for most applications reaching the maximum

performance around the number of hardware cores/threads.

Olivier et al evaluated performance of task parallelism

in OpenMP using Unbalanced Tree Search (UTS) bench-

mark [17]. They also compared expressiveness and scalability

for OpenMP, Cilk, Cilk Plus, Intel Thread Building Blocks, as

well as an OpenMP implementation for this benchmark. They

concluded that only the Intel compiler illustrates good load

balancing on UTS, but it still does not have an ideal speedup.

Leist et al [16] also did a comparison of parallel program-

ming models for C++ including Intel TBB, Cilk Plus and

OpenMP. This work considered three common parallel sce-

narios: recursive divide-and-conquer, embarrassingly parallel

loops and loops that update shared variables. Their results

indicated that all of the models perform well across the

chosen scenarios, and OpenMP is more susceptible to a loss

of performance in comparison with other frameworks, which

perform similarly.

Ajkunic et al [4] did a similar comparison to Leist et al’s

work, but they considered two additional APIs: OpenMPI

and PThreads. They only chose the matrix multiplication for

comparison. The authors concluded that OpenMP performs

poorly when compared to Cilk Plus and TBB. With regard to

effort required for implementation, OpenMP and C++ require

the least effort, whereas TBB and PThreads require more

effort.

Our work differs from previous research in that we summa-

rized an extensive list of features for threading models and

compared three most widely used programming languages,

OpenMP , Cilk Plus and C++11 for both task and data

parallelism. We also provided a comparison of programming

interfaces and runtime systems for these programming lan-

guages.

VI. CONCLUSION

In this paper, we report our extensive study and comparison

of state-of-the-art threading parallel models for the existing

and emerging computer systems. We provide a summary of

language features that are considered in a programming model

and highlight runtime scheduling techniques to implement a

programming model. We have compared the performance of

three popular parallel programming models: OpenMP, Cilk

Plus and C++11 with regard to task parallelism and data

parallelism. Overall, the results show that the execution times

for different implementations vary because of strategies of

load balancing in the runtime and task workload uniformity of

applications, and scheduling and loop distribution overhead.

For example, workstealing runtime could incur high over-

head for data parallel programming of applications because

of the serialization of the distribution of loop chunks among

parallel threads. However, if the application has adequate load

balancing and efficient task workload the effect of overhead

costs created by runtime could be less. Thus, dynamic nature

of task creation can influence the performance.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grant No. 1409946 and 1652732.

REFERENCES

[1] CilkPlus . https://www.CilkPlus.org/cilk-plus-tutorial. Ac-
cessed: July 03, 2016.

[2] Intel OpenMP runtime library. https://www.openmprtl.org/.
[3] Cody Addison, James LaGrone, Lei Huang, and Barbara Chap-

man. OpenMP 3.0 tasking implementation in openuh. In
Open64 Workshop at CGO, volume 2009, 2009.

[4] Ensar Ajkunic, Hana Fatkic, Emina Omerovic, Kristina Talic,
and Novica Nosovic. A comparison of five parallel program-
ming models for c++. In MIPRO, 2012 Proceedings of the 35th
International Convention, pages 1780–1784. IEEE, 2012.

[5] Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoe-
flinger, Yuan Lin, Federico Massaioli, Xavier Teruel, Priya
Unnikrishnan, and Guansong Zhang. The design of OpenMP
tasks. IEEE Transactions on Parallel and Distributed Systems,
20(3):404–418, 2009.

[6] Hans-J Boehm and Sarita V Adve. Foundations of the c++
concurrency memory model. In ACM SIGPLAN Notices, vol-
ume 43, pages 68–78. ACM, 2008.

[7] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin Skadron. Ro-
dinia: A benchmark suite for heterogeneous computing. In
Proceedings of the 2009 IEEE International Symposium on
Workload Characterization (IISWC), IISWC ’09, pages 44–54,
Washington, DC, USA, 2009. IEEE Computer Society.

[8] Alejandro Duran, Eduard Ayguadé, Rosa M Badia, Jesús
Labarta, Luis Martinell, Xavier Martorell, and Judit Planas.
Ompss: a proposal for programming heterogeneous multi-core
architectures. Parallel Processing Letters, 21(02):173–193,
2011.

[9] Alejandro Duran González, Xavier Teruel, Roger Ferrer, Xavier
Martorell Bofill, and Eduard Ayguadé Parra. Barcelona
OpenMP tasks suite: A set of benchmarks targeting the ex-
ploitation of task parallelism in OpenMP. In 38th International
Conference on Parallel Processing, pages 124–131, 2009.

[10] Karl-Filip Faxén. Wool-a work stealing library. ACM SIGARCH
Computer Architecture News, 36(5):93–100, 2008.

[11] Matteo Frigo, Charles E Leiserson, and Keith H Randall. The
implementation of the cilk-5 multithreaded language. In ACM
Sigplan Notices, volume 33, pages 212–223. ACM, 1998.

[12] Priyanka Ghosh, Yonghong Yan, Deepak Eachempati, and
Barbara Chapman. A Prototype Implementation of OpenMP



9

Task Dependency Support, pages 128–140. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013.

[13] Wei Huang, Shougata Ghosh, Sivakumar Velusamy, Karthik
Sankaranarayanan, Kevin Skadron, and Mircea R Stan. Hotspot:
A compact thermal modeling methodology for early-stage vlsi
design. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 14(5):501–513, 2006.

[14] Cameron Hughes and Tracey Hughes. Parallel and distributed
programming using C++. Addison-Wesley Professional, 2004.

[15] James LaGrone, Ayodunni Aribuki, Cody Addison, and Barbara
Chapman. A runtime implementation of OpenMP tasks. In
International Workshop on OpenMP, pages 165–178. Springer,
2011.

[16] Arno Leist and Andrew Bilman. A comparative analysis of par-
allel programming models for c++. In The Ninth International
Multi-Conference on Computing in the Global Information
Technology, 2014.

[17] Stephen L Olivier and Jan F Prins. Comparison of OpenMP 3.0
and other task parallel frameworks on unbalanced task graphs.
International Journal of Parallel Programming, 38(5-6):341–
360, 2010.

[18] Artur Podobas, Mats Brorsson, and Karl-Filip Faxén. A com-
parative performance study of common and popular task-centric
programming frameworks. Concurrency and Computation:
Practice and Experience, 27(1):1–28, 2015.

[19] Arch D Robison. Composable parallel patterns with intel cilk
plus. Computing in Science and Engineering, 15(2):66–71,
2013.

[20] Lukasz G Szafaryn, Todd Gamblin, Bronis R De Supinski, and
Kevin Skadron. Experiences with achieving portability across
heterogeneous architectures. Proceedings of WOLFHPC, in
Conjunction with ICS, Tucson, 2011.


	Introduction
	Features for Threading Programming APIs
	Comparison OF Language Features And Runtime Systems
	Language Features and Interfaces
	Runtime Systems

	Performance Comparison
	Benchmark Kernels
	Benchmarks from Rodinia

	Related Work
	Conclusion

